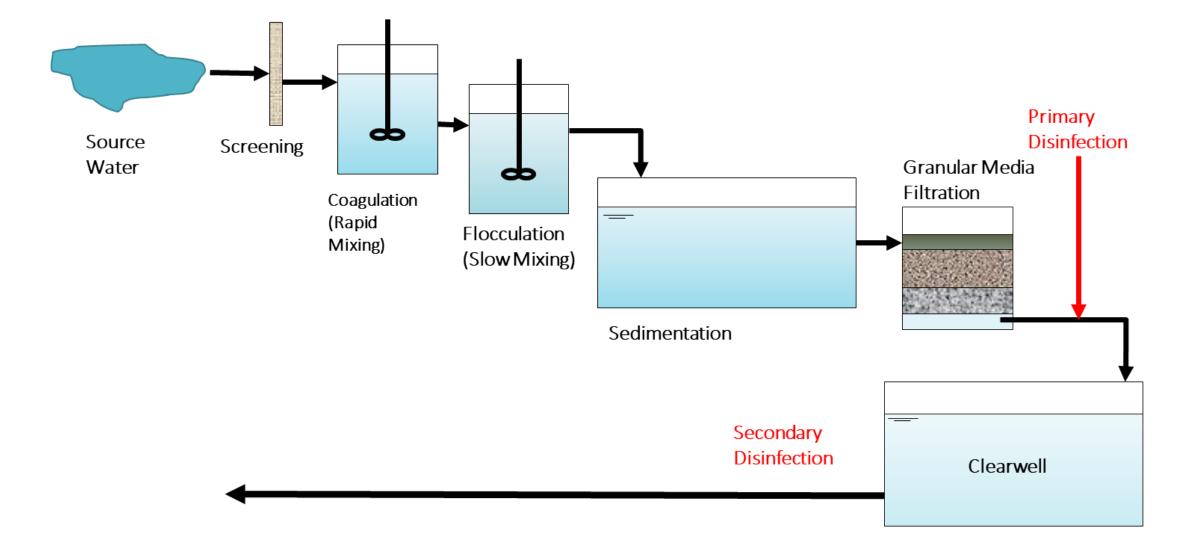
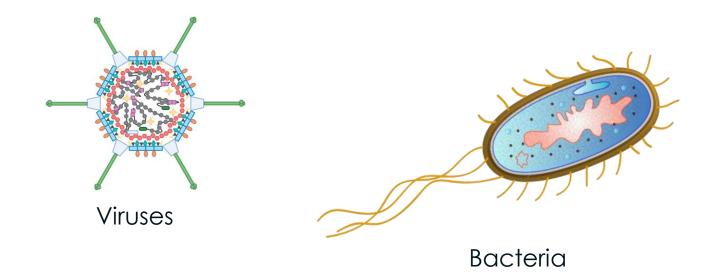
What should Small Water Systems know about **CT** disinfection?

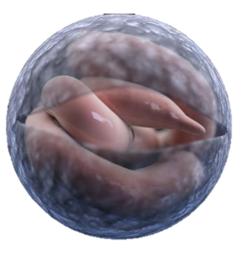

BC Small Water Systems Webinar

Pranav Chintalapati, PhD, P.Eng. pranav.c@ubc.ca

September 19, 2023

Outline


- Disinfection: the destruction of pathogens
- Guidelines for pathogen reduction
- What is CT?
- How do we get C?
- How do we get T?
 - Calculating volume of a reservoir
 - Calculating theoretical detention time (TDT)
 - Baffling Factors
- Log Credits
- Q&A



Primary and Secondary Disinfection

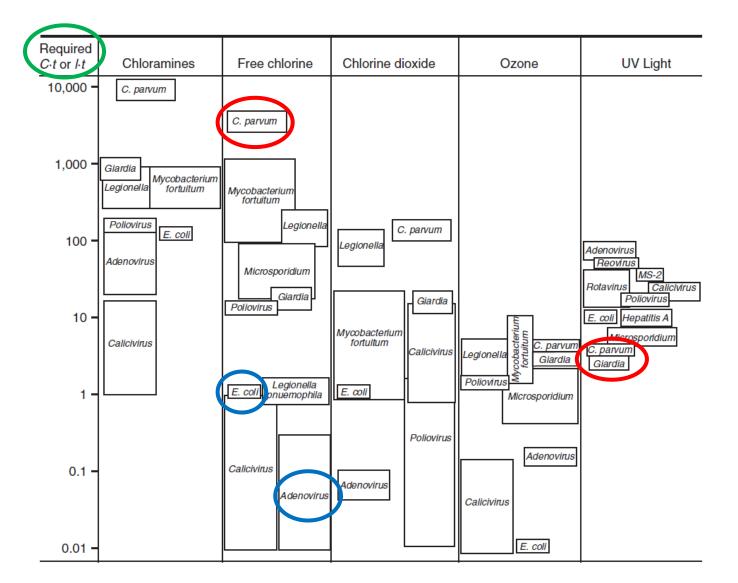
- Focused on destroying pathogens the microorganisms that make people sick
 - Bacteria, Viruses, Protozoa (like Giardia and Cryptosporidium)
- Primary Disinfection: Treating all the pathogens in the water at the treatment facility
 - \rightarrow Sometimes chlorine, sometimes UV, sometimes ozone
- Secondary Disinfection: Making sure pathogens don't regrow, and continue to treat the water in the pipes going to people's homes
 - \rightarrow Maintaining a chlorine residual

Target Pathogens

Protozoa

Guidelines for pathogen reduction

Surface Water*


- 4-log (99.99%) reduction of viruses
- 3-log (99.9%) reduction of Giardia and Crypto (protozoa)
- O detectable E. coli, total coliform, and fecal coliform (bacteria)

<u>Ground Water</u>

- GARP**: 4-3-2-1-0 rule
- GARP-viruses only: 4-log reduction of viruses

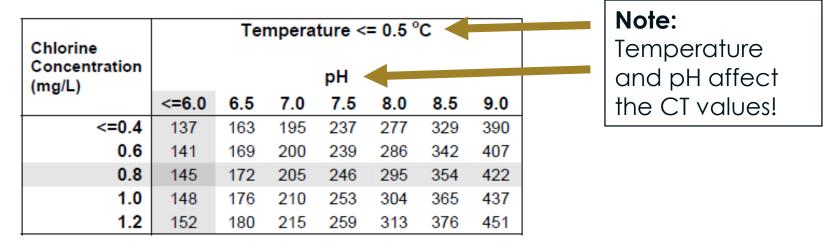
*Also, 2 forms of treatment (e.g., filtration + disinfection) and <1 NTU of turbidity **Ground Water At Risk of containing Pathogens

Effectiveness of Disinfectants

7

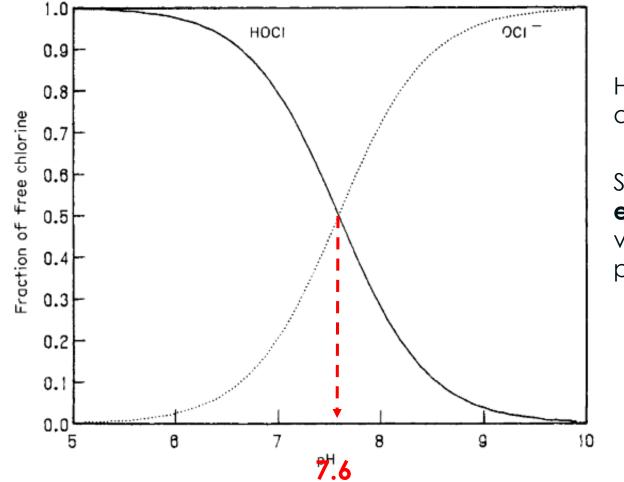
What is CT?

How effective a disinfectant is depends on both the concentration of the disinfectant (C) and the amount of time it's in contact with the water (T):


C = concentration of the disinfectant T = contact time between the disinfectant and the water

C × T = CT = a constant value required to achieve a specific level of disinfection for a pathogen.

CT values are determined for a <u>specific</u> pathogen


• For example, the table below shows CT values for 3-log removal of Giardia:

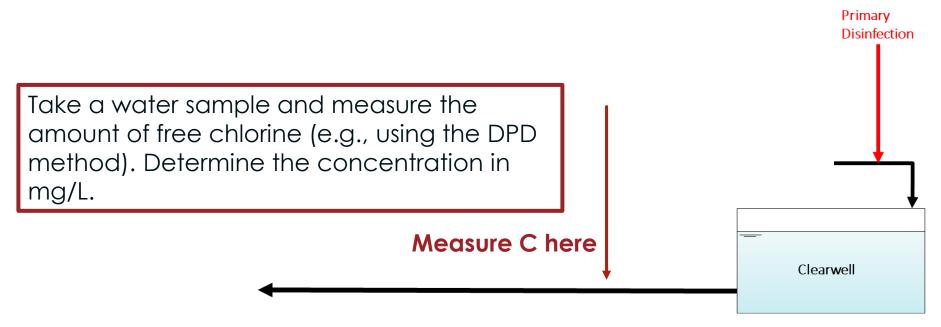
CT values for 3-Log Inactivation of *Giardia* Cysts by Free Chlorine (0.5 $^{\circ}\text{C}$ portion of table for 0.4 to 1.2 mg/L)

How Free Chlorine varies with pH

 $HOCl + H_2O \xleftarrow{pKa=7.6} H_3O^+ + OCl^-$

HOCI is a more effective disinfectant than OCI-

So, chlorine is more effective at lower pH values where HOCI is predominant

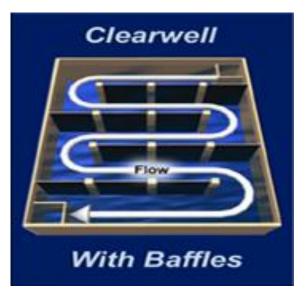

,	Table A1:	CT	Valu	les	for I	Inac	tiva	tion	OT (Glard	la Cy	Sts	oy ⊦r	ee c	nior	ine a	at U.:	5°C 0	or Lo	owei					
	Free Chlorine			pl	H ≤ 6					p⊦	= 6.5					рН	= 7.0					pł	l = 7.5		
So as pH gots	Concentration				Log Inactivation				Log Inactivation					Log Inactivation											
So as pH gets	mg/L	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	0.5	1	1.5	5 2	2.5	3
higher, we	≤ 0.4	23	46	69	91	114	137	27	54	82	109	136	163	33	65	98	130	163	195	40	. 79	119	158	. 198	237
need more CT	0.6	24	47	71	94	118	141	28	56	84	112	140	168	33	67	100	133	167	200			120		199	239
(more	0.8	24	48	73	97	121	145	29	57	86	115	143	172	34	68	103	137	171	205		82	123		205	246
•	1 1.2	25	49 51	74 76	99 101	123 127	148 152	29 30	59 60	88 90	117 120	147 150	176 180	35 36	70 72	105 108	140 143	175 179	210 215			127 130		211 216	253 259
disinfection)	1.2	25 26	52	78	101	127	152	30	61	90 92	120	150	184	30	74	111	143	184	215	43	89	133		210	266
for the same	1.6	26	52	79	105	131	157	32	63	95	126	158	189	38	75	113	151	188	226			137		228	273
log removal:	1.8	27	54	81	108	135	162	32	64	97	129	161	193	39	77	116	154	193	231	47	93	140		233	279
	2	28	55	83	110	138	165	33	66	99	131	164	197	39	79	118	157	197	236		95	143		238	286
	2.2 2.4	28 29	56 57	85 86	113 115	141 143	169 172	34 34	67 68	101 103	134 137	168 171	201 205	40 41	81 82	121 124	161 165	202 206	242 247			149 149		248 248	297 298
Higher	2.4	29	58	88	117	145	172	35	70	105	139	174	205	41	82 84	124	168	200	252		101			253	304
•	2.8	30	59	89	119	148	178	36	71	107	142	178	213	43	86	129	171	214	257	52				258	310
temperatures	3	30	60	91	121	151	181	36	72	109	145	181	217	44	87	131	174	218	261	53	105	158	211	263	316
generally lead																									
3																									
to more	Table A6.	сту	Vəli	105	for I	nac	tiva	tion	of	liard	ia Cv	sts h	v Era	oo Ch	lori	no ai	- 25 •	C							
to more	Table A6:	СТ	Valu			nac	tiva	tion	of G			sts b	y Fre	ee Ch	nlori			C				- nU	7.5		
to more effective	Free Chlorine	СТ		p۲	l ≤ 6		tiva	tion		рН	= 6.5		y Fre	ee Ch		pH =	7.0					pH =			
to more	Free Chlorine Concentration	СТ		p۲			tiva	tion			= 6.5		y Fre	ee Ch			7.0				Log	g Inac	7.5 tivatio		
to more effective	Free Chlorine	CT \ 0.5		p۲	l ≤ 6		tiva 3	tion 0.5		рН	= 6.5 ctivati		y Fre	ee Ch 0.5		pH =	7.0 tivatio		3	0.5	Log 1	•		n 2.5	3
to more effective disinfection	Free Chlorine Concentration mg/L ≤ 0.4	0.5	Lo 1 8	pH g Ina <u>1.5</u> 12	l≤6 ictiva 2 16	tion 2.5	3 24	0.5	L o 1 10	рН og Ina 1.5 15	= 6.5 ctivati 2 19	on 2.5 24	3 29	0.5	Lo 1 12	pH = g Inac 1.5 18	7.0 tivatio 2	on 2.5 29	35	0.5	1 14	g Inac 1.5 21	tivatio	2.5	42
to more effective disinfection Notice how	Free Chlorine Concentration mg/L ≤ 0.4 0.6	0.5	Lo 1 8 8	pH og Ina 1.5 12 13	l ≤ 6 octiva 2 16 17	tion 2.5 20 21	3 24 25	0.5 5 5	Lo 1 10 10	pH og Ina <u>1.5</u> 15 15	= 6.5 ctivati 2 19 20	on 2.5 24 25	3 29 30	0.5 6 6	Lo 1 12 12	pH = g Inact 1.5 18 18	7.0 tivatio 2 23 24	2.5 29 30	35 36	0.5 7 7 7	1 14 14	g Inac 1.5 21 22	tivatio 2 28 29	2.5 35 36	42 43
to more effective disinfection	Free Chlorine Concentration mg/L ≤ 0.4	0.5	Lo 1 8	pH g Ina 1.5 12 13 13	H ≤ 6 octiva 2 16 17 17	tion 2.5 20 21 22	3 24 25 26	0.5 5 5 5	Lo 1 10 10 10	pH og Ina 1.5 15 15 16	= 6.5 ctivati 2 19 20 21	on 2.5 24 25 26	3 29 30 31	0.5 6 6 6	Log 1 12 12 12	pH = g Inac 1.5 18 18 19	7.0 tivatio 2 23 24 25	2.5 29 30 31	35 36 37	0.5 7 7 7 8	1 14 14 15	1.5 21 22 22	tivatio 2 28 29 29	2.5 35 36 37	42 43 44
to more effective disinfection Notice how	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8	0.5	Lo 1 8 8 9	pH og Ina 1.5 12 13	l ≤ 6 octiva 2 16 17	tion 2.5 20 21	3 24 25	0.5 5 5	Lo 1 10 10	pH og Ina <u>1.5</u> 15 15	= 6.5 ctivati 2 19 20	on 2.5 24 25	3 29 30	0.5 6 6 6 6	Lo 1 12 12	pH = g Inac 1.5 18 18	7.0 tivatio 2 23 24	2.5 29 30	35 36	0.5 7 7 7 8 8	1 14 14	g Inac 1.5 21 22	tivatio 2 28 29	2.5 35 36	42 43
to more effective disinfection Notice how the required CT values are	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9	pH g Ina 1.5 12 13 13 13 14 14	I ≤ 6 ctiva 2 16 17 17 17 18 18 18	tion 2.5 20 21 22 22 23 23 23	3 24 25 26 26 27 27	0.5 5 5 5 5 5 6	Lo 10 10 10 10 10 11 11	pH og Ina 1.5 15 16 16 16 16 17	2 2 2 19 20 21 21 21 21 21 21 22	on 2.5 24 25 26 26 27 28	3 29 30 31 31 32 33	0.5 6 6 6 6 6 7	Log 12 12 12 12 12 12 13 13	pH = g Inac 1.5 18 18 19 19 19 20	7.0 tivatio 2 23 24 25 25 25 25 26	2.5 29 30 31 31 32 33	35 36 37 37 37 38 39	7 7 7 8 8 8 8	1 14 14 15 15 15 15 16	1.5 21 22 22 23 23 24	2 28 29 29 30 31 31	2.5 35 36 37 38 38 39	42 43 44 45 46 47
to more effective disinfection Notice how the required CT values are lower when	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4 1.6	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9 9	pH 9 Ina 1.5 12 13 13 13 14 14 14 14	I ≤ 6 ctiva 2 16 17 17 17 18 18 18 19	tion 2.5 20 21 22 22 23 23 23 23	3 24 25 26 26 27 27 27 28	0.5 5 5 5 5 5 6 6	Lo 10 10 10 10 11 11 11	pH og Ina 1.5 15 16 16 16 17 17	2 2 2 2 2 2 2 2	on 2.5 24 25 26 26 27 28 28 28	3 29 30 31 31 32 33 33	0.5 6 6 6 6 7 7 7	Log 1 12 12 12 12 12 13 13 13	pH = g Inac 1.5 18 18 19 19 19 20 20	7.0 tivatio 23 24 25 25 25 25 26 27	2.5 29 30 31 31 32 33 33	35 36 37 37 38 39 40	7 7 7 8	1 14 14 15 15 15 16 16	1.5 21 22 22 23 23 23 24 24 24	2 28 29 29 30 31 31 32	2.5 35 36 37 38 38 39 40	42 43 44 45 46 47 48
to more effective disinfection Notice how the required CT values are lower when the water	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9	ph g Ina 1.5 12 13 13 13 14 14 14 14 15	I ≤ 6 ctiva 2 16 17 17 17 18 18 19 19	tion 2.5 20 21 22 22 23 23 23 23 24	3 24 25 26 26 27 27 28 29	0.5 5 5 5 5 5 6	Lo 10 10 10 10 11 11 11 11	pH og Ina 1.5 15 16 16 16 17 17 17	2 2 19 20 21 21 21 21 22 22 23	2.5 24 25 26 26 27 28 28 28 28 28	3 29 30 31 31 32 33 33 34	0.5 6 6 6 6 6 7	Log 12 12 12 12 12 12 13 13	pH = g Inac 1.5 18 18 19 19 19 20 20 21	7.0 tivatic 23 24 25 25 25 25 26 27 27	2.5 29 30 31 31 32 33 33 34	35 36 37 37 38 39 40 41	7 7 7 8 8 8 8	1 14 14 15 15 15 15 16	1.5 21 22 22 23 23 23 24 24 24 25	tivatio 2 28 29 30 31 31 32 33	2.5 35 36 37 38 38 39 40 41	42 43 44 45 46 47
to more effective disinfection Notice how the required CT values are lower when	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9 9 9 9	pH 9 Ina 1.5 12 13 13 13 14 14 14 14	I ≤ 6 ctiva 2 16 17 17 17 18 18 18 19	tion 2.5 20 21 22 22 23 23 23 23	3 24 25 26 26 27 27 27 28	0.5 5 5 5 5 5 6 6 6 6	Lo 10 10 10 10 11 11 11	pH og Ina 1.5 15 16 16 16 17 17	2 2 2 2 2 2 2 2	on 2.5 24 25 26 26 27 28 28 28	3 29 30 31 31 32 33 33	0.5 6 6 6 6 7 7 7 7	Log 1 12 12 12 12 12 13 13 13 13 14	pH = g Inac 1.5 18 18 19 19 19 20 20	7.0 tivatio 23 24 25 25 25 25 26 27	2.5 29 30 31 31 32 33 33 34 34	35 36 37 37 38 39 40	7 7 8 8 8 8 8 8	1 14 14 15 15 15 16 16 16	1.5 21 22 22 23 23 23 24 24 24	2 28 29 29 30 31 31 32	2.5 35 36 37 38 38 39 40	42 43 44 45 46 47 48 49
to more effective disinfection Notice how the required CT values are lower when the water	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.2 2.4	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9 9 10 10 10 10	pH og Ina 12 13 13 13 14 14 14 14 15 15 15 15	I ≤ 6 ctiva 2 16 17 17 18 18 19 19 19 20 20 20	tion 2.5 20 21 22 23 23 23 23 23 23 24 24 25 25	3 24 25 26 27 27 27 28 29 29 30 30	0.5 5 5 5 5 6 6 6 6 6 6 6	Lo 10 10 10 10 11 11 11 11 11 12 12 12	pH 5 1.5 15 16 16 16 17 17 17 17 18 18 18 18	2 2 19 20 21 21 21 21 22 22 23 23 23 24	on 2.5 24 25 26 27 28 28 28 28 28 28 29 29 30	3 29 30 31 31 32 33 33 34 35 35 36	0.5 6 6 6 6 7 7 7 7 7 7 7 7 7 7	Log 1 12 12 12 12 13 13 13 13 14 14 14 14	pH = g Inac 1.5 18 18 19 19 20 20 20 21 21 21 21 22	7.0 tivatio 23 24 25 25 25 25 26 27 27 27 27 28 29	2.5 29 30 31 31 32 33 33 34 34 35 36	35 36 37 37 38 39 40 41 41 41 42 43	7 7 8 8 8 8 8 8 8 8 8 9 9	1 14 14 15 15 15 16 16 16 17 17 17	Inac 1.5 21 22 22 23 23 24 24 24 25 25 26 26 26	tivatio 2 28 29 29 30 31 31 31 32 33 33 33 34 35	2.5 35 36 37 38 38 39 40 41 42 43 43	42 43 44 45 46 47 48 49 50 51 52
to more effective disinfection Notice how the required CT values are lower when the water	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9 9 10 10 10 10 10	pH rg Ina 12 13 13 13 14 14 14 15 15 15 15 15 15	I ≤ 6 ctiva 2 16 17 17 17 18 18 19 19 19 20 20 21	tion 2.5 20 21 22 23 23 23 23 23 23 24 24 25 25 26	3 24 25 26 27 27 28 29 29 30 30 30 31	0.5 5 5 5 5 6 6 6 6 6 6 6 6	Lo 1 10 10 10 10 11 11 11 11 12 12 12 12 12	pH 5g Ina 1.5 15 16 16 16 17 17 17 17 18 18 18 18 19	2 2 2 2 2 2 2 2	on 2.5 26 26 27 28 28 28 28 28 29 29 30 31	3 29 30 31 31 32 33 33 34 35 35 36 37	0.5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	Log 1 12 12 12 12 13 13 13 13 14 14 14 14 14 15	pH = g Inac 1.5 18 19 19 19 20 20 21 21 21 21 21 22 22	7.0 tivatio 23 24 25 25 25 26 27 27 27 27 28 29 29	2.5 29 30 31 31 32 33 33 34 34 34 35 36 37	35 36 37 37 38 39 40 41 41 41 42 43 44	7 7 8 8 8 8 8 8 8 9 9 9 9	1 14 14 15 15 15 16 16 16 17 17 17 18	Inac 1.5 21 22 23 23 24 24 25 25 26 26 27	tivatio 2 28 29 29 30 31 31 32 33 33 34 35 35	2.5 35 36 37 38 39 40 41 42 43 43 44	42 43 44 45 46 47 48 49 50 51 52 53
to more effective disinfection Notice how the required CT values are lower when the water	Free Chlorine Concentration mg/L ≤ 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.2 2.4	0.5 4 4 4 4 4	Lo 1 8 9 9 9 9 9 10 10 10 10	pH og Ina 12 13 13 13 14 14 14 14 15 15 15 15	I ≤ 6 ctiva 2 16 17 17 17 18 18 19 19 19 20 20 20	tion 2.5 20 21 22 23 23 23 23 23 23 24 24 25 25	3 24 25 26 27 27 27 28 29 29 30 30	0.5 5 5 5 5 6 6 6 6 6 6 6	Lo 10 10 10 10 11 11 11 11 11 12 12 12	pH 5 1.5 15 16 16 16 17 17 17 17 18 18 18 18	2 2 19 20 21 21 21 21 22 22 23 23 23 24	on 2.5 24 25 26 27 28 28 28 28 28 28 29 29 30	3 29 30 31 31 32 33 33 34 35 35 36	0.5 6 6 6 6 7 7 7 7 7 7 7 7 7 7	Log 1 12 12 12 12 13 13 13 13 14 14 14 14	pH = g Inac 1.5 18 18 19 19 20 20 20 21 21 21 21 22	7.0 tivatio 23 24 25 25 25 25 26 27 27 27 27 28 29	2.5 29 30 31 31 32 33 33 34 34 35 36 37 38	35 36 37 37 38 39 40 41 41 41 42 43	7 7 8 8 8 8 8 8 8 8 8 9 9	1 14 14 15 15 15 16 16 16 17 17 17	Inac 1.5 21 22 22 23 23 24 24 24 25 25 26 26 26	tivatio 2 28 29 29 30 31 31 31 32 33 33 33 34 35	2.5 35 36 37 38 38 39 40 41 42 43 43	42 43 44 45 46 47 48 49 50 51 52

11

o work AT O E OC Table Λ 1 Chile - 14 I

How do we get C?

When calculating CT, **the value of C** is <u>the concentration of</u> <u>the disinfectant at the outlet of the contact tank</u>.


Why do we measure C there?

Because, the concentration of disinfectant (e.g., free chlorine) decreases as it reacts in the contact tank. Measuring at the outlet gives us a conservative estimate of the concentration in the tank.

How do we get **T**?

First, let's think about how the disinfectant is in **contact** with the water (and the pathogens in it):

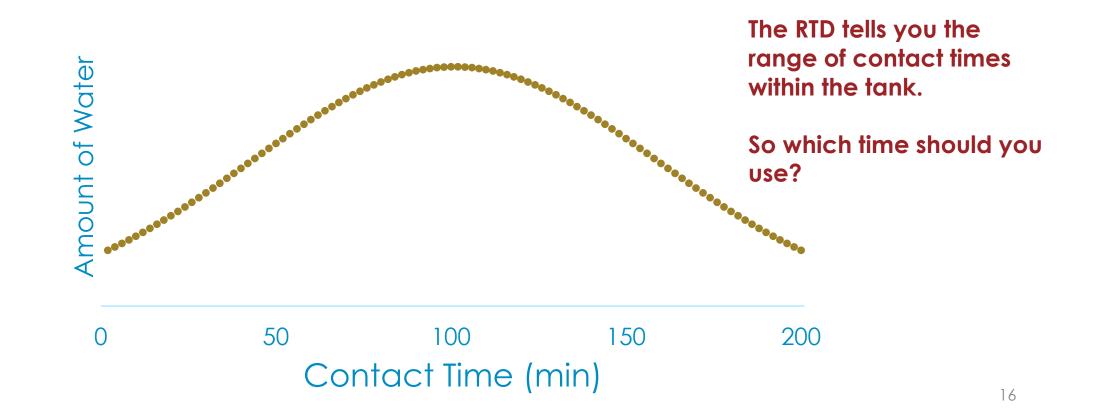
How do we get **T**?

The time (T) that the disinfectant is in contact with water can be determined in a couple of ways:

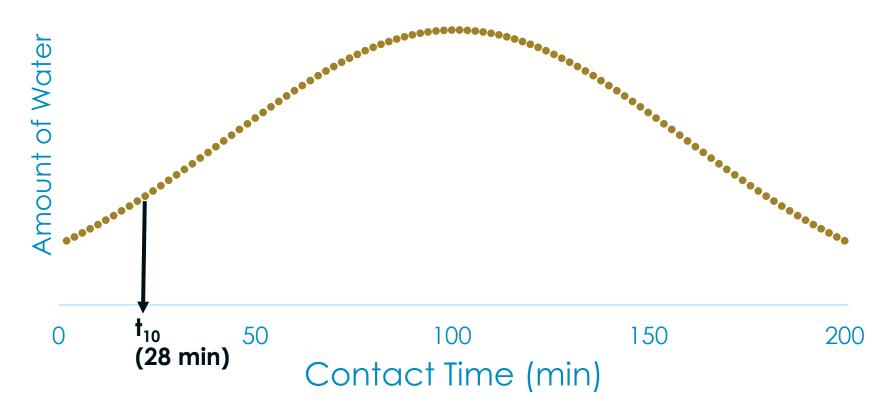
1. Get the t_{10} from a residence time distribution curve

2. Use the Flow rate, Volume of the contact basin and a Baffling Factor

What's a t_{10} ?


When you add water to a contactor, it doesn't flow perfectly through the system in single-file order, like this:

This is called "Ideal Plug Flow". In reality, some water can bypass the normal flow path and short-circuit the contact tank, leaving the outlet earlier than we want.



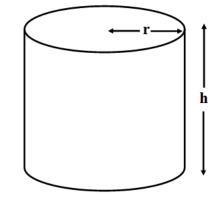
A **residence time distribution (RTD) curve** can tell you the different amounts of time water spends in the contact tank:

 $\mathbf{T} = t_{10}$ from the RTD

To be on the safe side, the contact time **T** is taken as the time **the first 10% of the water passes through the contactor** (known as t_{10}). This should be provided by the manufacturer.

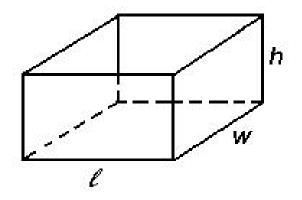
What if we don't have an RTD and the manufacturer doesn't give us any information on the t_{10} ?

You can estimate it using a Baffling Factor (BF)


Baffling Factor Method

- 1. Calculate the volume of the contact basin (V)
- 2. Measure the peak hourly flowrate through the contact basin (Q)
- 3. Calculate the Theoretical Detention Time (TDT)
 - This could also be called the Theoretical Retention Time (TRT), or Ideal Retention Time.
- 4. Determine the Baffling Factor (BF) using the BF Table
- 5. Calculate T by multiplying the TDT by the BF

1. Calculate the Volume of Contactor


Volume of cylinder:

$$V = \pi r^2 h$$

Volume of rectangular basin:

$$V = lhw$$

2. Measure flow rate (Q) to contactor

• Use a flow meter to read the flowrate

- Use the **peak hourly flowrate** for the calculation
 - Try to always use the "worst case scenario"

3. Calculate the Theoretical Detention Time (TDT)

TDT = V/Q

Example:

A chlorine contactor with <u>serpentine baffles</u> has a volume of 250 m³ and the peak hourly flow rate is 2 m³/min. The chlorine residual is 0.8 mg/L.

What is the TDT?

$$TDT = \frac{V}{Q} = \frac{250 \ m^3}{2 \ \frac{m^3}{min}} = 125 \ minutes$$

4. Baffling Factor (BF)

Example:

A chlorine contactor with serpentine <u>baffles</u>has a volume of 250 m³ and the peak hourly flow rate is 2 m³/min. The chlorine residual is 0.8 mg/L.

Baffling Condition	Baffling Factor	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities.
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles.
Average	0.5	Baffled inlet or outlet with some intra-basin baffles.
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra- basin baffles, outlet weir or perforated launders.
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra-basin baffles.

5. Calculate T

 $T = TDT \times BF$

Example: A chlorine contactor with <u>serpentine</u> <u>baffles</u> has a volume of 250 m³ and the peak hourly flow rate is 2 m³/min. The chlorine residual is 0.8 mg/L.

 $T = TDT \times BF = 125 \min \times 0.7 = 87.5 \min$

What is the CT?

$$CT = C \times T = 0.8 \frac{mg}{L} \times 87.5 min = 70 \frac{mg min}{L}$$

Log Credits

We calculated that the CT in the previous example is:

$$CT = 70 \; \frac{mg \; min}{L}$$

Remember that CT table for 3-log removal of Giardia? Let's say <u>pH is 6.5</u> and <u>temperature is 0.5 °C</u>. What is the required CT value?

CT values for 3-Log Inactivation of *Giardia* Cysts by Free Chlorine (0.5 °C portion of table for 0.4 to 1.2 mg/L)

Chlorine	Temperature <= 0.5 °C											
Concentration (mg/L)	рН											
(<=6.0	6.5	7.0	7.5	8.0	8.5	9.0					
<=0.4	137	163	195	237	277	329	390					
0.6	141	169	200	239	286	342	407					
0.8	145	172	205	246	295	354	422					
1.0	148	170	210	253	304	365	437					
1.2	152	180	215	259	313	376	451					

So, the required CT for 3-log removal of giardia is 172 mg min/L and our chlorination tank is giving us a CT of 70 mg min/L.

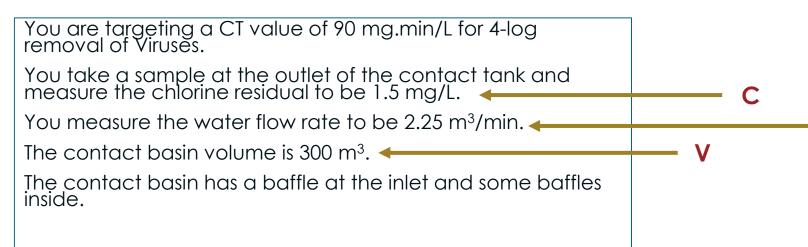
How many giardia removal log credits do we get for our chlorine tank?

$$Log \ Credits = \frac{CT_{calculated}}{CT_{required}} \times (Required \ Log \ Removal)$$

$$Log \ Credits = \frac{70 \ \frac{mg \ min}{L}}{172 \ \frac{mg \ min}{L}} \times (3 \ Log \ Removal) = 1.2 \ Log \ Credits$$

Example

You are targeting a CT value of 90 mg.min/L for 4-log removal of Viruses.


You take a sample at the outlet of the contact tank and measure the chlorine residual to be 1.5 mg/L.

You measure the water flow rate to be $2 \text{ m}^3/\text{min}$.

The contact basin volume is 300 m³.

The contact basin has a baffle at the inlet and some baffles inside.

What is the calculated CT value? How many Log Credits have you achieved?

What is the calculated CT value? How many Log Credits have you achieved?

$$TDT = \frac{V}{Q} = \frac{300 \ m^3}{2.25 \ \frac{m^3}{min}} = 133.33 \ minutes$$

 $T = TDT \times BF = 133.33 min \times 0.5 = 66.67 min$

$$CT = C \times T = 1.5 \frac{mg}{L} \times 66.67 \min = 100 \frac{mg\min}{L}$$

$$Log \ Credits = \frac{100 \ \frac{mg \ min}{L}}{90 \ \frac{mg \ min}{L}} \times (4 \ Log \ Removal) = 4.44 \ Log \ Credits$$

Baffling Condition	Baffling Factor	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities.
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles.
Average	0.5	Baffled inlet or outlet with some intra-basin baffles.
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra- basin baffles, outlet weir or perforated launders.
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra-basin baffles.

Q

Summary

- How effective a disinfectant is depends on both the concentration of the disinfectant (C) and the amount of time it's in contact with the water (T)
 - CT = C×T
- C should be measured at the outlet of the contact tank
- ${\bf T}$ is the amount of time the first 10% of water leaves the contact tank (t_{10}) according to the RTD
- If you don't know t_{10} , you can estimate it using:
 - Volume of the contact tank (V)
 - Peak flow rate (Q)
 - Baffle Factor (BF)
- Look up the CT required to achieve target log removal for a pathogen
- Compare the calculated CT for your system with the required CT to determine how many log credits your system has achieved.

