
Harmful Algae Blooms – What's to be done?

for Small Water Systems March 21 2023

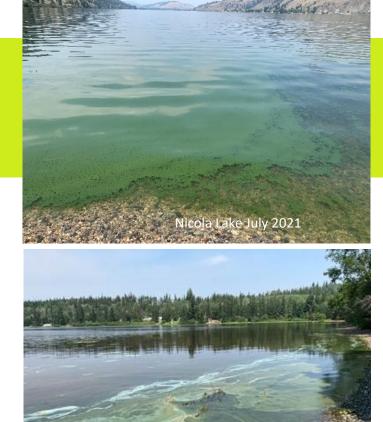

Heather Larratt R.P.Bio.

Table of Contents (Linked)

- Introduction what is a HAB? 3
- How to "see" a HAB 7
- Algae bloom promotors 9
- <u>Risks from HABs 11</u>
- Cyanotoxins background 17
- Monitoring algae blooms 30
- Managing HAB risks with water treatment 33
- Reducing HAB intensity 41
- <u>A test 52</u>

Norman Lake August 202

HABs - why should I care?

\$


An example of the scale of the potential economic impact arising from the occurrence of harmful algal blooms (HABs) in estuaries, is the estimated cost to the US economy of **US\$100 million per annum**.

EWG Analysis: Preventing and Treating Algae Blooms in U.S. Has Cost at Least \$1.1 Billion Since 2010

Estimates indicate that these blooms could cost the Canadian Lake Erie basin economy \$272M annually.

JAN FEB MARAPR MAYJUN JULAUG SEP OCT NOV DEC

HABs will increase your operating expenses

Algae

WHAT A DIFFERENCE IN CELL SIZE!

- Diatoms (made of glass)
- Green filament with spiral chloroplasts
- Cyanobacteria filament (found in <u>every</u> aquatic environment)

1 micron
5 micron

25 micron

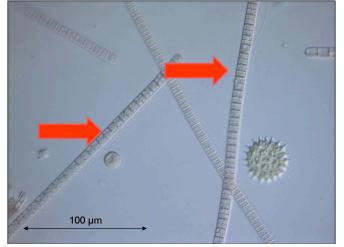
What is a HAB?

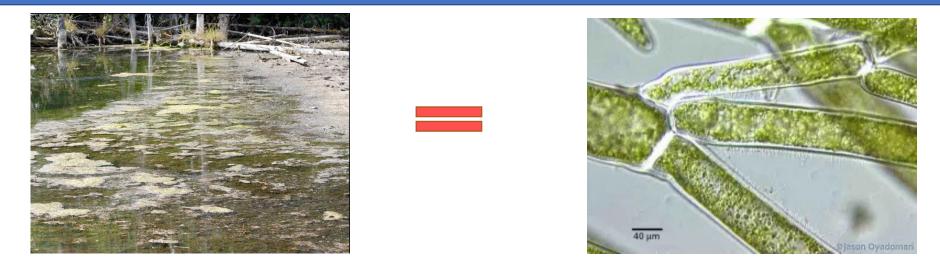
Harmful algal blooms (HABs) occur when algae grow out of control while producing toxic or harmful effects.

What is NOT a HAB?

That's a matter of opinion, but this overgrowth of algae will not <u>directly</u> cause toxicity or harmful effects, but it does create a habitat for trouble.

All algae blooms indicate an imbalance in the ecosystem




How to "see" an algae bloom:

The physical shape of an algae bloom reflects its microscopic structure

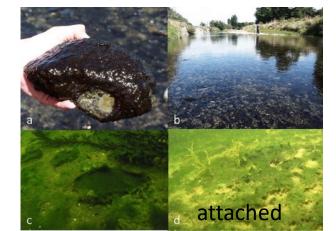
Blooms = a super-abundance such as > 2000 cells/mL; they occur naturally but can be accelerated

What causes a HAB in flowing water?

Algae bloom triggers & promoters (when to expect trouble in a stream)

Filamentous green algae: stable low flows, warm water, permanently wetted substrates, no shade above water and low shading from turbidity (High P) (Late summer) (filter clogging)

Diatoms: stable cool flows, more independent of water temp and day length than other algae, low shade affected by invertebrate grazing (Low P high N) (winter spring) (filter clogging)


Didymo: a stalk-forming diatom that behaves invasively, forming huge grey/white/green masses in stable low flows (winter, late summer, fall) (Low P)

Cyanobacteria: most respond to high P, warm water, stable flows and still water; Most are low light tolerant, some like calcite: Stress (low light, declining flows, stranding, bloom aging) triggers toxin production (summer, fall)

What can cause a HAB in standing water?

Algae bloom triggers & promoters (when to expect trouble in a lake or reservoir)

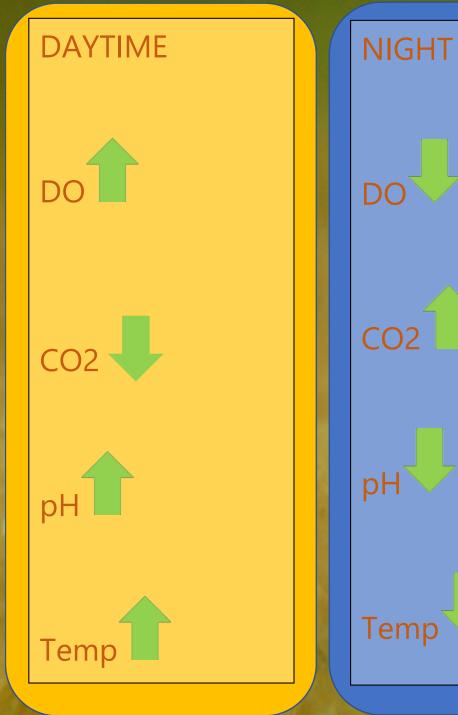
Filamentous green algae: warm water, permanently wetted substrates, no shade above water and low shading from turbidity (High P) (Late summer) (filter clogging)

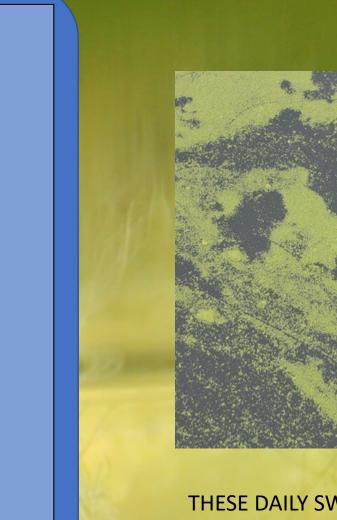
Diatoms: cool water, low shade – diatoms are more independent on water temp and daylength than other algae, they are grazed by zooplankton (Low P high N NEED silica) (Can be GOOD for a lake but NOT filters, astringent taste and odor)

Chrysophyte (golden algae): can bloom in low nutrient, but high organic waters, (can bloom in spring) (Low N,P) (strong fishy taste and odor)

Cyanobacteria: most respond to high P, warm water, still shallow water; Many are low light tolerant: Benthic and floating types. Stress triggers toxin production (summer, fall) (toxins can withstand some types of water treatment)

Uroglena bloom 2007


Risks from HABs:


1. Daily dissolved oxygen, pH, CO₂ swings

2. Toxins

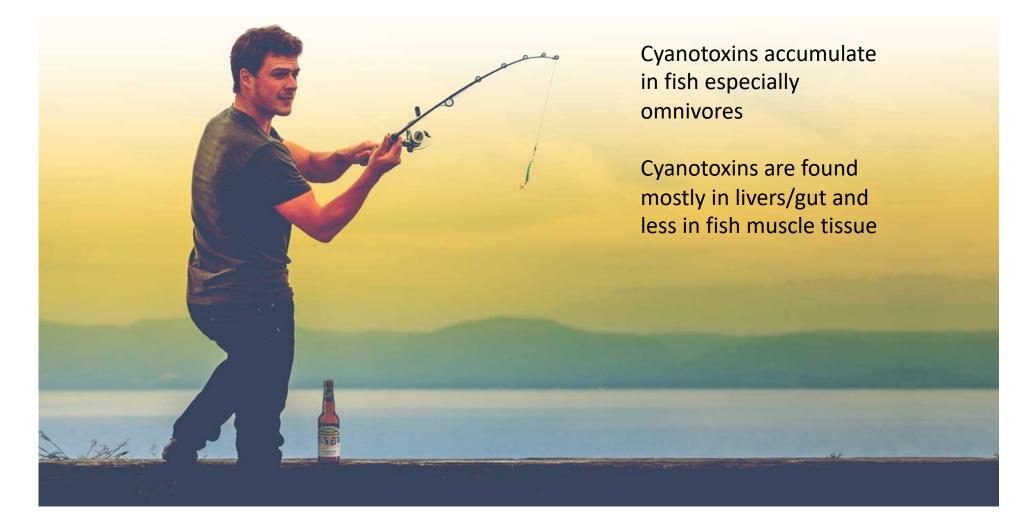
3. Toxin bioaccumulation

1. Daily DO(& pH CO₂) swings

THESE DAILY SWINGS BECOM DURING ALGAE BLOOMS In North America, most of the known cyanotoxins have been identified from benthic (bottom scum) cyanobacteria. Acute doses are well known. Vulnerable animals include waterfowl, cattle, dogs and occasionally people (rare!). There are also fatality reports of sheep, goats, horses, mules, donkeys, pigs/hogs, rabbits, poultry, elk, deer, zebras, wildebeests, rhinos, badgers, skunk, mink, squirrels, rats, bats, hawks, flamingos, bees...

Cyano toxins

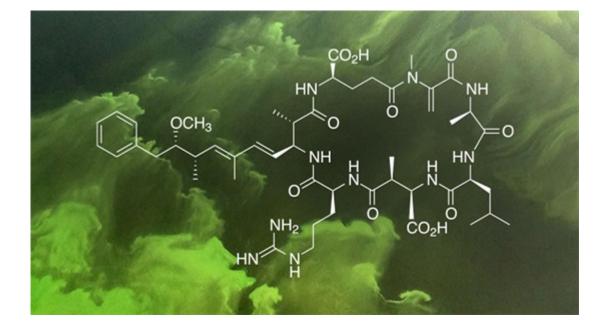
Cyanobacteria / Major cyanotoxin groups	Lyngbyatoxin LYN	Aplysiatoxins APL	Lipopolysaccharide LPS	Cylindospermopsin CM	Microcystin MC	Nodularins NOD	Anatoxins (-a) ATX	Saxitoxins SAX neosaxitoxin NEO	BMAA	Q/anopeptolins CPL	Anabænopeptins APT	Taste and Odor	
Type of toxin	Dermal toxin	Dermal toxin	Dermal + cell toxin		Liver toxin carcino genic	Liver toxin carcin ogenic		Nervetoxin	Nerve toxin carcin ogen	Nerve toxi	n Nerve toxin		
LD50 (ug/kg)				300	50–1000		20-5000						
Guideline Anabaena /					<1 ug/L		<1 ug/L						
Dolichospermum	Yes-?		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	MIB Geo	
Anabaenopsis			Yes		Yes				Yes				
Aphanizomenon / Cuspidothrix	Yes-?		Yes	Yes	Yes		Yes	Yes	Yes		Yes	Geo	
Aphanocapsa	Yes-?		Yes		Yes				Yes				
Arthrospira					Yes-?		Yes-?		Yes				
Calothrix					Yes-?		Yes-?		Yes				
Chroococcus group					Yes-?				Yes				
Gyanobium					Yes-?				Yes		Т	he mo	ost commonly found toxic
Cylindrospermopsis	Yes-?		Yes	Yes	Yes		Yes-?	Yes	Yes				
Gylindrospermum					Yes-?		Yes	Yes	Yes		С	yanok	acterial were:
Fischerella					Yes				Yes				ystis spp. 50%
Geitlerinema					Yes			Yes	Yes				
Gloeotrichia	Yes-?				Yes				Yes		Α	naba	ena spp. 30%
Gloeothece					Yes-?				Yes				izomenon spp. 7.5%
Haplosiphon			Yes		Yes				Yes				
Limnothrix					Yes			Yes	Yes		- P	lankto	othrix spp. 7.3%
Lyngbya group	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes		Yes	MIB Geo	toria con E 6%
Leptolyngbya	Yes-?				Yes		Yes-?		Yes			Iscilla	toria spp. 5.6%
Merismopedia					Yes				Yes		ir	1 alob	al reports
Microcystis	Yes-?		Yes		Yes	Yes-?	Yes		Yes	Yes	Yes	9.00	
Nostoc	Yes-?		Yes		Yes	Yes-?	Yes-?		Yes				
Nodularia	Yes-?		Yes		Yes-?	Yes			Yes		Yes		
Oscillatoria	Yes	Yes	Yes	Yes-?	Yes		Yes	Yes	Yes		Yes	MIB Geo	
Phormidium / Microcoleus	Yes		Yes		Yes		Yes	Yes	Yes				
Planktothrix	Yes	Yes	Yes		Yes		Yes	Yes	Yes	Yes	Yes	MIB Geo	From: Toxic Cyanobacteria Blooms – a
Planktolyngbya	Yes				Yes				Yes				
Rectonema	Yes	Yes	Yes	Yes			Yes-?	Yes	Yes				field/laboratory guide D.A. Crayton
					X6+ 0				Vac				


- 60% of tested cyanobacteria blooms had toxins. Cyanobacteria are most likely to produce toxins when they are stressed (such as low light, overgrowth, old age)
- Many cyanobacteria can produce more than one type of cyanotoxin
- 88% of cyanotoxins co-occurred with taste/odor compounds

From: Toxic Cyanobacteria Blooms – a field/laboratory guide D.A. Crayton Environmental Health Assessments Washington State no date Chronic low-dose exposure to cyanotoxin "cocktails"

China, Zhejiang, Haining	1977– 1996	n.a.	MCs	Greater incidence of colorectal cancers in patients relying on river and pond water as drinking water source in comparison to people using underground well water or tap water. Microcystins detected in river and pond water, their concentrations were correlated with the cancer incidence		
China, Jiangsu, Wuxi	n.a.	n.a.	MCs	Microcystin in drinking water was positively correlated with male overall cancer mortality and male stomach cancer mortality, but negatively correlated with male intestinal cancer mortality		
USA, Florida	1981– 1998	n.a.	n.a.	No significant associations between the incidence of colorectal cancer in people living within the area supplied with surface water compared to people supplied with deep ground water in GIS-based study		
Serbia	1999– Microcystis sp., 2008 Aphanizomenon sp., Anabaena sp., Planktothrix sp.		MCs	Geographical incidence of 13 cancers (brain; bronchus and lung; heart, mediastinum, and pleura; ovary; testis; kidney; stomach; small intestine; colorectum; retroperitoneum and peritoneum; leukemia; malignant melanoma of skin and primary liver cancer) positively correlated with the occurrence of cyanobacterial blooms and toxins		
Portugal	2000– 2010	Microcystis aeruginosa, Aphanizomenon sp., Oscillatoria sp.	n.a.	Populations exposed to cyanobacteria-contaminated drinking water had higher serum levels of liver enzymes, and higher incidence of cancers (liver, colon, and rectum cancer)		
USA, Ohio, Celina, Grand Lake St. Marys	1996– 2008	Aphanizomenon sp., Microcystis sp., Anabaena sp., Planktothrix sp.	MC, CYN, ATX, STX	Periodically supplied with cyanobacteria-contaminated surface water; comparison of cancer incidence in the population (hepatocellular and colorectal cancer) was inconclusive compared to two groundwater supplied cities		
Nervous tissue, Brain – • Anatoxin-a • Anatoxin-a(S) • Saxitoxins • (Cyanopeptolins) Lungs			Immune syst Cylindrosp Lipopolysa Microcysti	permopsin accharides		
 Cylindrospermopsin Microcystins Nodularins Liver Cylindrospermopsin Microcystins Nodularins Limnothrixin 			-	permopsin tins) ne permopsin		

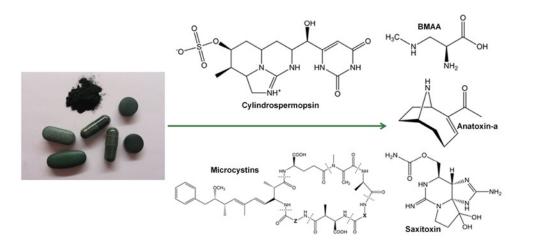
Chronic gastrointestinal illnesses connected to the consumption of cyanobacteria-contaminated water


3. Toxin bioaccumulation

Environ Int. 2020 Mar 14 2020. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisherbased investigation and murine model study. Zhao Y, Yan Y, Xie L, Wang L, He Y, Wan X, Xue Q

09 February 2018 Aquatic Microbiology <u>https://doi.org/10.3389/fmars.2018.00030</u> A Global Analysis of the Relationship between Concentrations of Microcystins in Water and Fish Natalie M. Flores1*, Todd R. Miller2 and Jason D. Stockwell1

Cyanotoxin background



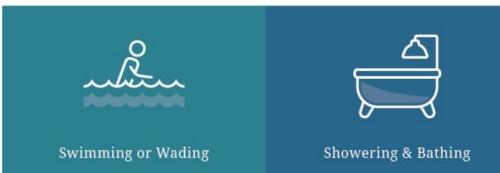
1. Exposure routes

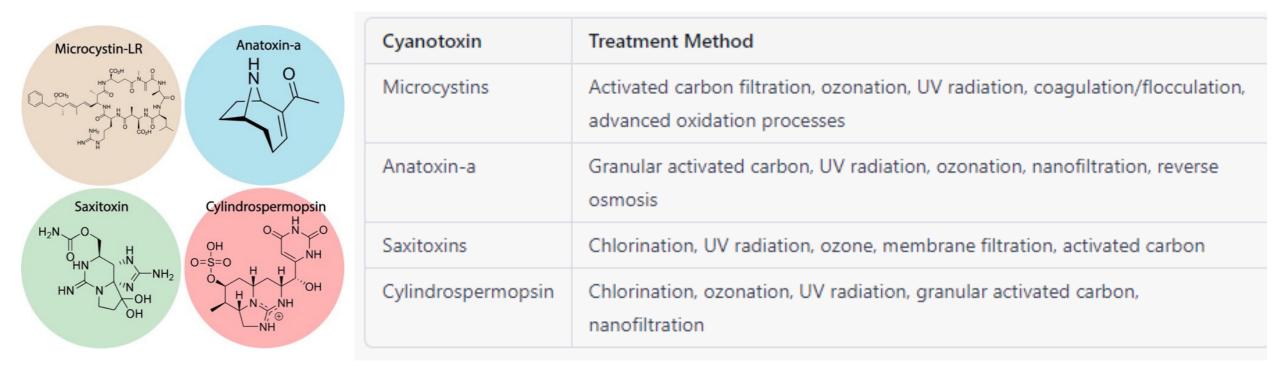
2. Cyanotoxin types

3. Guidance from IHA

Exposure routes

Detection of Cyanotoxins in Algae Dietary Supplements


by Audrey Roy-Lachapelle 1, Morgan Solliec 1, Maryse F. Bouchard 2 andSébastien Sauvé 1, *ORCID INGESTION

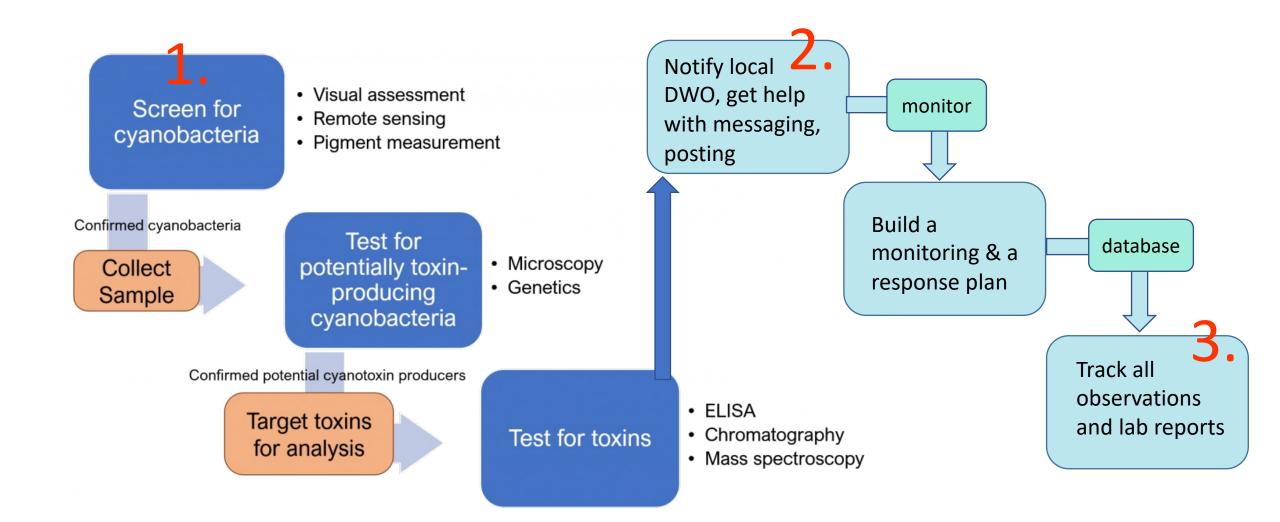

INHALATION

SKIN CONTACT

New cyanotoxins are constantly being discovered, at last count, over 200. Effective treatment depends on their chemistry.

Guidance you can use:

- <u>Decision Protocols for Cyanobacterial</u> <u>Toxins in B.C – Drinking Water and</u> <u>Recreational Water</u>
- <u>Algae Watch</u>
- <u>HealthLink BC: Cyanobacteria</u> <u>Blooms (Blue-Green Algae)</u>

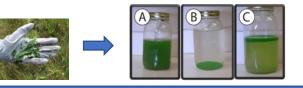

Monitoring algae blooms:

1. Phytoplankton

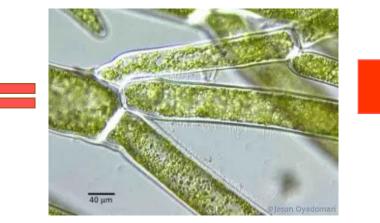
2. Periphyton

3. Toxin testing

Have a monitoring plan



How to jar/stick-test an algae bloom:



Cyanobacteria blooms:

- Cannot be picked up on a stick
- Looks like green/blue paint
- Float to the top in a jar initially
- Release a blue color
- Smells septic or musty

Filamentous green blooms:

- Can be picked up with a stick
- Looks like green hair
- Suspended in jar then slowly sink
- Do not release a blue color
- Smells grassy or fishy

Phytoplankton (floating algae) sampling

Why? Unusual water color or smell (algae bloom) or floating scum, animals/fish sick or dying

When? ASAP following observation or incident

Where? Near observation or incident

How?

1. Use reasonable precautions to fill a 500 mL or 1L plastic sample bottle to sample pond or pool from several points (or a smaller bottle or zip-lock bag is fine for scums because this is not a quantitative sample).

- 2. Sample scums with a visible difference separately.
- 3. Sample intakes separately, if any.
- 4. Keep samples refrigerated and cold during shipping.

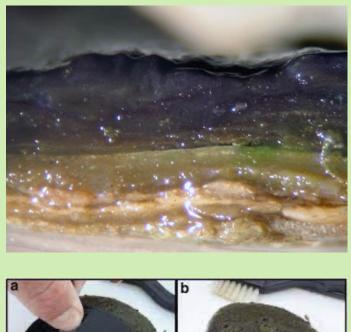
Take note of: Floating scums Odors *Take photos* Twice per week is fine to track change in a bloom

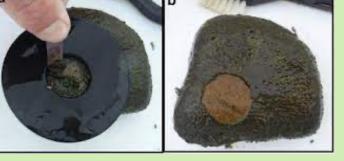
How to talk about <u>Phytoplankton</u> - Algae Descriptors

Physical appearance Color/haze to water

Suspended flakes or blobs

Filaments


Floating mat



Color
N=none
W=white/grey
YG= Yellow-green
G=Green
BG= blue-green
B=blue
GP=grey-pink
R=Red
RB=Reddish Brown

Smell Rotten Musty Fishy Astringent Grassy

2. Periphyton (attached algae) sampling

Why? Unusually thick periphyton (bloom), dark black leathery mats covering >50% of substrates, or fish (or cattle, dogs, waterfowl) sick / dying

When? ASAP following observation or incident

Where? Near observation or incident

How? Use reasonable precautions to:

 Take a quantitative sample (3-5 rocks and batch) (See Barbour et al. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers or equivalent)
 Take a qualitative sample (from 5 different spots and batch) using rake, "grabber", collect pebbles, etc.) and place that material into a marked ziplock bag, keeping any algae that look different separated when possible.
 Keep samples refrigerated and cold during shipping.

NOTE:

Time since last flushing flow/ significant flow change in streams Presence of calcite Presence of moss or other large plants *Take photos* Once per week is fine to track change in a bloom

How to talk about <u>Periphyton</u> - Algae Descriptors

Colony shape (these can be combined)

Glaze/crust

tufts/streamers

Blobs

Mats

and a

Test.

Color
N=none
W=white/grey
LB=Light Brown
RB=Reddish Br.
G=Green
R=Red
DB=Dark Brown
B=Black

Smell

Rotten

Musty

Fishy

Astringent

Periphyton Coverage						
1 - Rocks not slippery,	no obvious colour (<0.5mm thick)				
2 - Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)						
3 - Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)						
4 - Rocks are very slippery, numerous clumps (5-20mm thick)						
5 - Rocks mostly obscured by algae mat, may have long strands (>20mm thick)						

Cyanotoxin testing (Abraxis strips)

Why? Algae bloom in water or substrate observed

When? ASAP following observation or incident

Where? Near observation or incident

How? Use reasonable precautions to:

- 1. Collect composite sample from 4-6 spots at your site, in clean clear glass jar that was previously wrapped in duct tape to keep sample dark
- 2. Keep sample cool and transfer to your lab
- 3. Follow Abraxis test method for rapid cyanotoxin testing

Cyanotoxin confirmation sampling by certified lab (when you find one) -Takes about a week+

Cyanobacteria testing by taxonomy lab (takes days to weeks) Allows determination of which cyanotoxins can be present

NOTE: algae don't change daily unless weather conditions changed Blooms take many weeks to build and ~3 to 7 days to collapse, so its usually not necessary to sample more frequently than 1 -2x weekly for cyanobacteria and cyanotoxins

Genetic testing (brand new!)

Why? Algae bloom in water or substrate observed

When? Following observation or incident, especially if blooms are repeating annually

Where? Near observation or incident

How? Use reasonable precautions to:

- 1. Collect composite sample from 4-6 spots at your site, in sterile clean glass jar provided by lab
- 2. Keep sample cold or freeze according to lab instructions
- 3. Follow all lab instructions for shipping sample(s)

Safety when sampling:

Safety when sampling:

- Do not work alone near water ever.
- Ensure stable footing
- Use an appropriate sampling reach assist
- Wear gloves
- Don't spend a lot of time around dense cyanobacteria blooms (consider wearing a KN95 disposable mask when boating)
- Your safety thoughts?

Please be especially careful whenyou see "decayed blue"toxin presence is most likely then

Photo of Douglas Lake *Aphanizomenon* bloom 2022 – B. Holmes Tools for: managing HABs with water treatment –

big facilities

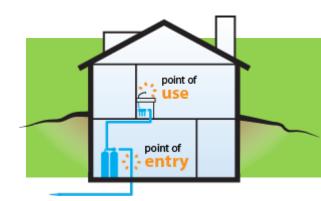
1. dissolved air floatation

2. filtration

3. point of use

1. Dissolved Air Floatation

Dissolved	Air Flota	tion		
HEVER	NE			i VI
the second second	- Constant	C. L. D. D.	E.	
			E	
				17
				Y
Contraction of the		and the second		
			No. and	
and the second		States and States	Salar Salar	Sales .

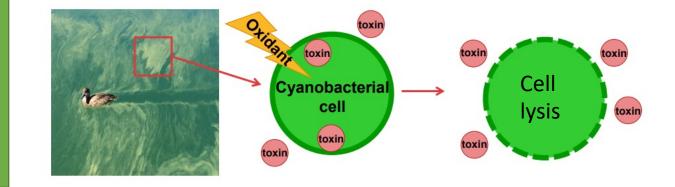

Treatment Process	Advantages	Disadvantages		
Pre-Oxidation	Ozone pretreatment can remove microcystin at 0.5 mg/L ozone, need residual of 0.05 to 0.1 (affected by TOC in water)	Oxidation more effective on treated water, lower TOC. Oxidants can lead to cell lysis and release of toxins, oxidant can remove intracellular toxin if enough oxidant available		
		Far easier to remove toxin in intact cells, than dissolved toxin from water after lysis occurs		
Conventional	Conventional filtration (coagulation,	Does not deal with extracellular toxins		
Filtration	clarification, filtration) effective at removal of intact cells	Need frequent backwashing and sludge removal because release of toxin is a concern in sedimentation tanks - cell lysis, time on filter media		
		Rapid filtration does not effectively remove cells, inadequate backwash leads to lysis		
DAF	Different species of algae removed at different rates. Reference did not discuss whether use of a different coagulant and flocculant aid (polymer) would affect results Constant skimming of floc may be preferable to conventional filter as risk of	Does not deal with extracellular toxins		
	lysis may be reduced			

2. Filtration/Coagulation

Filtration

Treatment Process	Advantages	Disadvantages	
Pre-Oxidation	Ozone pretreatment can remove microcystin at 0.5 mg/L ozone, need residual of 0.05 to 0.1 (affected by TOC in water)	Oxidation more effective on treated water, lower TOC. Oxidants can lead to cell lysis and release of toxins, oxidant can remove intracellular toxin if enough oxidant available	
		Far easier to remove toxin in intact cells, than dissolved toxin from water after lysis occurs	
Conventional Filtration	Conventional filtration (coagulation, clarification, filtration) effective at removal of intact cells	Does not deal with extracellular toxins Need frequent backwashing and sludge removal because release of toxin is a concern in sedimentation tanks - cell lysis, time on filter media Rapid filtration does not effectively remove cells, inadequate backwash leads to lysis	
DAF	Different species of algae removed at different rates. Reference did not discuss whether use of a different coagulant and flocculant aid (polymer) would affect results Constant skimming of floc may be preferable to conventional filter as risk of lysis may be reduced	Does not deal with extracellular toxins	

3. Point of Use


GOOD

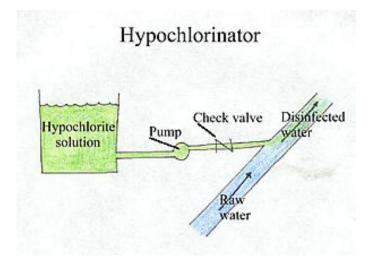
-alternate water

-GAC (granular activated carbon) filter under low pressure

BAD -boiling the water -high pressure filters

Talk to your Health Officer!

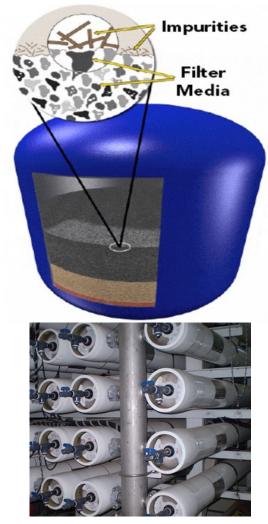
Tools for: managing HABs with water treatment -


small facilities

1. Ultra violet

2. filtration

3. natural degradation


1. UV + Chlorine

Treatment Process	Advantages	Disadvantages
Chlorination	Chlorination - aqueous chlorine or calcium hypo removes 95% of microcystins or nodularin but at twice the normal dose required for disinfection. Acute toxicity removed, but liver damage continued to take place - either incomplete toxin removal, or formation of toxic chlorination byproducts. Anatoxin-a or saxitoxins could not be destroyed with chlorine. Cylindrospermopsin was oxidized by 4 mg/L chlorine at pH 7.2-7.4	Oxidation is pH dependant. Microcystin destroyed by chlorine at 0.5 ppm (30 min), at pH 7, does not oxidize at pH >8 Chloramines, ClO ₂ not promising Disinfection byproduct acute toxicity studied for microcystin, nodularin, saxitoxin and cylindrospermopsin. Of the four, only cylindrospermopsin had acute effects. Chronic exposure not studied
UV	UV light - microcystin decomposed by UV. speed improved by photocatalytic process with TiO2 (still 5min half life) H2O2, UV, O3 together investigated, needs more study	UV doses to break down cyanotoxin molecules are several orders of magnitude higher than for pathogen disinfection. UV as stand alone treatment is economically unfeasible TiO2 and UV not cost effective, although may be suitable for point of use Unsuitable for water with high TOC

2. Filtration

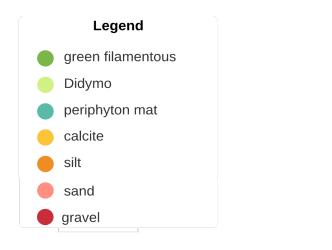
Treatment Process	Advantages	Disadvantages	
Granular Activated Carbon / Powdered Activated Carbon	GAC / PAC filtration after conventional removes >80% of microcystins	If used without filtration, media lifespan reduced by TOC loading PAC /GAC - not investigated for all cyanotoxins, issues such as type, contact time, lifespan of effective adsorption of filter beds, biofilms, etc. need to be examined	
Slow Sand	Removes some extracellular toxins due to biodegradation (several hours required)	Sand filtration does not lead to substantial reduction of toxicity	
Membrane	Reverse Osmosis and nanofiltration can remove most dissolved cyanotoxins as well as intact cells. Ultrafiltration and microfiltration are very efficient at removing whole cells	Both ultrafiltration and microfiltration will allow cyanotoxins to pass, although ultrafiltration may reduce extracellular microcystin and nodularin concentrations Concern regarding cell damage / lysis, and while cell damage was observed during filtration, cyanotoxin concentration increases were not observed in testing	

3. Natural toxin degradation

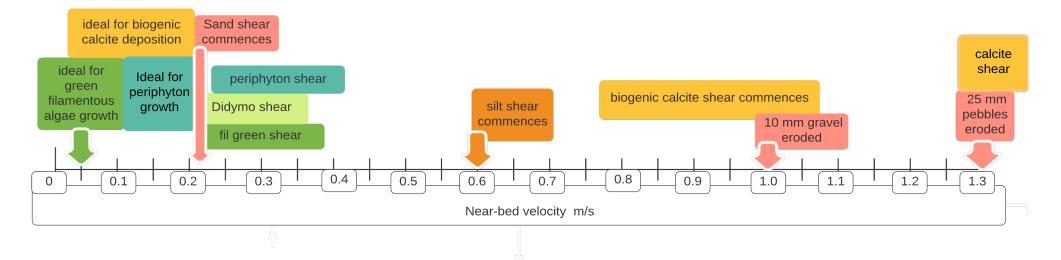
- Microcystins In natural waters and in the dark, microcystins may persist for months or years.
- Anatoxin-a is relatively stable in the dark, but in pure solution in the absence of pigments it undergoes rapid photochemical degradation in sunlight in hours to days.
- Saxitoxins undergo a series of slow chemical hydrolysis reactions in the dark. The initial break-down products will increase toxicity over a period of up to three weeks, before toxicity begins to abate during the succeeding 2-3 months.
- Cylindrospermopsin is relatively stable in the dark, with slow breakdown occurring, even at elevated temperature (50°C) (Chiswell et al., 1999). In sunlight and in the presence of cell pigments, breakdown occurs within 2-3 days
- Fortunately, all cyanotoxins are consumed by other bacteria in a process called <u>biodegradation</u>. Biodegradation of cyanotoxins by sediment bacteria within lakes occurs throughout the world. It also occurs in carbon-based filter media through the activity of bacteria resident in the biofilm on the media. The rates of biodegradation vary widely and are dependent on environmental conditions and on conditioning of the degrading bacteria to the cyanotoxin.

	Toxin Hal	f-life with sediment	No Sediment	Location
•	microcystin-LR	3 days	6+ days	UK
•	anatoxin-a	4-5 days		UK
•	cylindrospermopsin	11 days	15 days	Australia
•	microcystin	5 days	20 days	Australia
•	saxitoxins		9-28 days	Australia

• (MRACC, 2002; Huw, et al., 1997; Cousins et al., 1996; Jones and Orr, 1994).


Tools for reducing HAB intensity in: streams and ponds

1. Flushing flows


2. Shade

3. Dewatering

1. Flushing flows

- fall flushing flows are especially good for limiting overwinter low dissolved oxygen
- summer algae accumulations can be managed by periodic flushing flows BUT we need storms or storage

2. Shade prevents blooms

RIPARIAN AREA

SUSPENDED COVER

SHADE BALLS

FLOATING SOLAR PANELS

No sunlight = no algae BUT

Decomposers (bacteria fungi yeasts etc. are still functioning. Consider the need for gas exchange to prevent build up of "swamp gas" so breathable covers are preferred.

- Riparian vegetation = numerous benefits including habitat values, filtration
- Suspended cover/shade sails above pond surface = still some habitat value
- Floating shade balls on pond surface = very limited habitat value
- Floating solar panels is new and gives shade + electricity. (islands of panels, built atop a buoyant mounting platform and anchored) = minimal habitat value

3. Constructed pond dewatering

Note: When dewatered substrates are re-wetted, a surge of nutrients is released into the water column. Also, redox-sensitive metals etc. can change states or be liberated. Pond dewatering can also be used to control aquatic invasives Tools for reducing algae bloom intensity in: lakes and reservoirs

1. Watershed protection

2. Riparian restoration

3. Prevent boat impacts

1. Watershed protection

- The issue will be all about preventing <u>nutrient loading</u> and altered <u>flow regime</u>
- Identify areas with highest potential for nutrient loading (winter cattle range, feed lots, cattle access points on creeks, fertilized agriculture drainage, septage, eroding riparian areas, urban stormwater). Work with stakeholders to develop a watershed protection plan (see OBWB toolkit*)

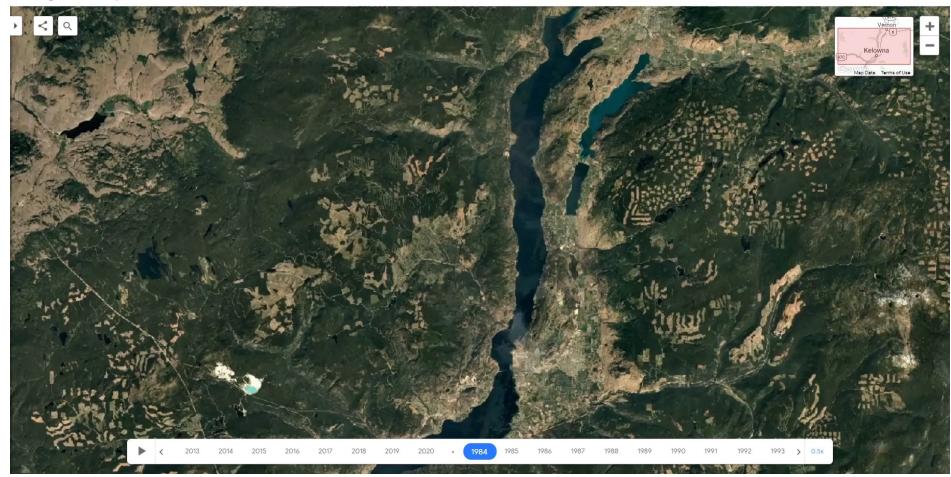
- Use Google Earth time slider
- Use Sentinel Hub satellite images

*https://sourcewaterprotectiontoolkit.ca/wpcontent/uploads/source-water-protection-toolkit.pdf

Google Earth Time Slider

Timelapse – Google Earth Engine × + $\leftarrow \rightarrow C \cap$ \triangleq earthengine.google.com/timelapse/

Google Earth Engine


∨ – ⊡ ×

🖻 🛧 🚺 🔤 👘 🔅

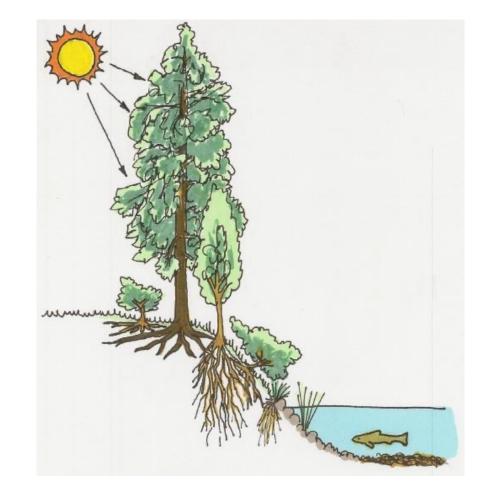
Commercial

Timelanse In Farth

- <u>https://eartheng</u> <u>ine.google.com/t</u> <u>imelapse/</u>
- Excellent tool for visualizing large watershed level changes over many years

Sentinel hub

- <u>https://apps.sen</u>
 <u>tinel-</u>
 <u>hub.com/sentin</u>
 <u>el-playground/</u>
- Can use the date option to select any date for a given site. Easy to create time series such as >>
- Data can be incorporated into GIS systems


Bloom on Wood Lake - Apr 14, 17, 19

2. Riparian restoration

PLANTING

- Staking: Willow grows best, then Red Osier dogwood, then cottonwood: stake in late winter / early spring
- Transplants: sedge, rush in early summer
- Native nursery stock
- Seeds: grasses, forbs, cattail in fall PROTECTING
- Cattle fencing, small fenced exclosures

3. Prevent boat impacts

- Boat launch is the greatest point of vulnerability – protect
- We suggest boats with onboard water tanks drain them completely before moving between lakes to avoid transferring aquatic invasives
- We suggest operating boats to produce minimal wakes in <8m depth and NO sediment disturbance

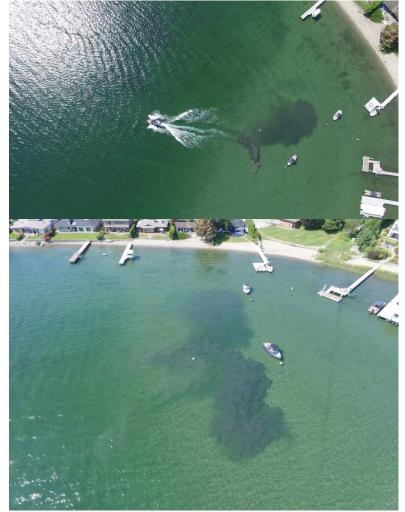


Figure 3: Sediment plume from wake-surf boat in 2 m deep water (top) and same location after 3 minutes (bottom)

Aphanizomenon flos-aquae

Mougeotia spp.

Microcystis aeruginosa

Woronichinia naegeliana

Spirogyra spp.

Planktothrix agardii. spp.

Gloeotrichia echinulata

Cladophora

Dolichospermum mendotae

Dolichospermum sp.

Questions?

Human ingenuity...

Aubrey Organics

Blue Green Algae Hair Rescue Conditioning Mask

There's no better conditioner for the hair than protein. And there

Additional Information

- BC Algae Watch: <u>www.gov.bc.ca/algaewatch</u>
- HealthLinkBC Cyanobacteria Blooms (Blue-Green Algae): <u>https://www.healthlinkbc.ca/healthlinkbc-files/cyanobacteria-blooms-blue-green-algae</u>
- District of Lake Country: <u>https://www.lakecountry.bc.ca/en/index.aspx</u>
- Health Canada (2022) Guidelines for Canadian Recreational Water Quality - Cyanobacteria and Their Toxins <u>https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidance-canadian-recreational-water-quality-cyanobacteria-toxins.html</u>
- World Health Organization (2021) Toxic Cyanobacteria in Water Second Edition. A guide to their public health consequences, monitoring and management. <u>https://www.who.int/publications/m/item/toxiccyanobacteria-in-water---second-edition</u>

