# **Treatment of Manganese in Drinking Water**

Ted Molyneux Vancouver, BC Indigenous Services Canada 22 November 2022





Indigenous Services Services aux Canada Autochtones Canada



#### **Acknowledgements**

- Dave Tambyln, Public Health Engineer, FNHA
- Kimberly Brown, Public Health Engineer, FNHA
- Grant Robertson, Certified Water Technician, HomePlus Products Inc.
- Satwinder Paul, Assistant Teaching Professor & Program Coordinator, Thompson Rivers University
- Sanjana Akella, Project Engineer, ISC



First Nations Health Authority Health through wellness





#### Manganese as a drinking water problem

- Aesthetic concerns:
  - tasteless, odorless
  - black/brown color  $\rightarrow$  staining, turbidity
  - aesthetic objective (AO) 20 µg/L (down from 50)
    - $\rightarrow$  consumer confidence



#### Manganese as a drinking water problem

#### Health concerns

- essential element; deficiency rare



- excessive Mn causes disease: manganism
  - severe: bradykinesia, widespread rigidity, gait disturbances, falling, dystonia, difficulty walking backwards, and speech difficulties
  - mild: impaired fine motor skills, eye-hand coordination and reaction time
- epidemiological association with neurological effects in children
  - behavioral (memory, attention, motor function, hyperactivity)
  - intellectual impairment (5-10 IQ points) \*\*
- maximum acceptable concentration (MAC) 120 µg/L derived for bottle-fed infants based on rat studies showing similar endpoints

#### What is the risk for everyone who is not an infant?

- BC Drinking Water Officers' Guide Part B
- Manganese in Drinking Water Health Link BC

#### How FNHA evaluates risk...

**GUIDANCE ON MANGANESE IN DRINKING WATER** 

BRITISH

- The magnitude of the exceedance above the MAC
  - 120<Mn<300 … short-term ⇒ further evaluation ≠ immediate action</p>
  - 120<Mn<300 ... long-term ⇒
    - notification that infants should not consume formula made with tap water
    - options for mitigation (⇒ bottled water, new well, *treatment*)
  - **Mn>300** μg/L ⇒
    - > US EPA, WHO ⇒ health risks to general population (especially children)
    - consider risks to a broader population
    - short-term mitigation (DNC ⇒ bottled water)

#### **Studies on IQ of School-Aged Children**



#### Conclusions

The findings of this cross-sectional study suggest that exposure to manganese at levels common in groundwater is <u>associated with</u> intellectual impairment in children.



### (Just enough) chemistry ... 1

- heavy (transition) metal
- atomic number 25, molar mass 55 g
- neighbour of iron



#### (Just enough) chemistry ... 2

- Key factor is oxidation state
  - Mn<sup>o</sup> = metal (doesn't occur naturally)
  - Mn<sup>2+</sup> = Mn(II) = most soluble (clear)
  - Mn<sup>3+</sup> = Mn(III) = low solubility (dark brown)
  - Mn<sup>4+</sup> = Mn(IV) = low solubility (black)
  - Mn<sup>7+</sup> = Mn(VII) = soluble (pink)
- Similar to iron:
  - $Fe^{2+} = Fe(II) = most soluble (clear)$
  - $Fe^{3+} = Fe(III) = Iow solubility (yellow, red)$



### **Too much chemistry! Pourbaix (equilibrium)**

We start with *dissolved* Mn<sup>2+</sup> in groundwater



- Mn solids (MnO<sub>x</sub>) may be:
  - small (colloidal; < 0.1 micron)</p>
  - large (particulate; > 1 micron)
- Treatment to reduce Mn
  - want all solid, or all dissolved; not a mix
- Ion exchange, RO goals:
  - keep Mn dissolved
  - $-\downarrow$  pH or  $\downarrow$  ORP (E<sub>H</sub>)
  - ⇒ no chlorination
- Filtration goals:
  - shift to Mn solid
  - $-\uparrow$  pH or  $\uparrow$  ORP (E\_H)
  - ⇒ chlorine ok

#### Level of Service Standards (LOSS)



1 - 4 connections ⇒ IWS ≠ \$\$\$



≥ 5 connections ⇔ CWS = \$\$\$

#### **Treatment overview**



#### **Main Treatment Options for IWS Manganese Treatment**

- Dissolved Mn (II)
  - NF/RO membrane filtration (POU)
  - Ion exchange (POE)
- Particulate MnO<sub>x</sub>(s)
  - MF/UF membrane filtration (POE or POU)
- Both Dissolved and Particulate
  - MF/UF membrane → NF/RO membrane filtration train

#### **IWS - Typical POE NSF 44 Water Softener Setup**



# IWS - Typical POE NSF 44 Water Softener Setup HOW IT WORKS



01 Softening

02 Regeneration

03 Backwashing

04 Rinse

05 Controller

Pentair Water Softening System, 1-2 bath (11.6 USGPM), 3-4 bath (11.9 USGPM), 4+ bath (13.2 USGPM) options available

## **IWS - Typical POE NSF 44 Water Softener Setup**

## HOW IT WORKS



| 01 | 5 Micron Prefilter System |
|----|---------------------------|
| 02 | Carbon Filtration         |
| 03 | Softening                 |
| 04 | Regeneration              |
| 05 | Backwashing               |
| 06 | Rinse                     |
| 07 | Controller                |

Pentair Salt Softener & Carbon Combo System, PAC4: 1-3 bath; PAC7: 4-6 bath

#### **IWS - Typical POU NSF 58 Reverse Osmosis Setup**



#### **IWS - Typical POU NSF 58 Reverse Osmosis Setup**





RO-Hi – Ultimate 5-Stage 90 GPD High Output Fast Flow Reverse Osmosis Water Systems for Drinking Water, WQA Certified

#### **Main Treatment Options for CWS Manganese Treatment**

- Dissolved Mn (II)
  - Manganese oxide based media catalytic oxidation and filtration
  - Direct oxidation and filtration → using chlorine, potassium permanganate, ozone
  - − Biological oxidation and filtration → Suez Mangazur
- Particulate MnO<sub>x</sub>(s)
  - Media filtration
- Both Dissolved and Particulate
  - Pre-filtration using media/membranes → Greensand media filtration train

#### **Oxidation Filtration**

- Robust (wide? pH and temperature range, particulate and dissolved)
- With or with out chemical pretreatment
  - Generally, chlorine is preferred over potassium permanganate
  - Also, Ozone and hydrogen peroxide
- But pretreatment can even just be
  - .....air
  - Oxygen is not as strong as chlorine
  - but is the oldest known to people
  - Air Injected Oxidation (AIO)

#### **Oxidation Filtration Continued**

- Two types of Manganese Oxide media:
  - Coated
    - Manganese Greensand, now GreensandPlus, Birm
  - Solid
    - Originally just called pyrolusite
    - Filox, Mang-Ox, Pyrolox, or Katalox-Light
  - Others
    - Catalytic Carbon (Centaur)
    - Specialty cation exchange resins (Purolite)

#### **CWS – Typical Oxidation Filtration Setup**



#### **CWS – Typical Oxidation Filtration Setup**



#### **Complications with Oxidation Filtration**

- Manganese reacts far more slowly than Iron
  - And creates smaller particles that are harder to filter

- Other common problems in BC
- 1. Arsenic
- 2. Organics
- 3. Ammonia
- 4. Hydrogen Sulfide
- 5. Hardness

#### Summary and steps ...

- Need complete chemical test(s) to characterise source well water
- Test for total and dissolved metals to see if Mn is:
  - a) dissolved
  - b) particulate (total dissolved)
  - c) both
- If Mn > MAC (120 µg/L), then *recommend* treatment (infants)
- If Mn > USEPA Health-based guideline (300  $\mu$ g/L), then *urge* treatment

#### Summary and steps ...

- Recommend some combination of:
  - microfiltration or ultrafiltration for IWS
  - POE NSF 44 softening or POU NSF 58 RO for IWS
  - Greensand filtration for CWS
- Validation sampling required to confirm
  - efficacy (Mn < 20  $\mu$ g/L)
  - breakthrough (time until Mn > 120  $\mu$ g/L)
- Steps to lift advisories for IWS and CWS:
  - IWS sampling after installation at POU
  - CWS sampling after installation and after first backwash event

#### References

- Review paper: Tobiason, J. E., Bazilio, A., Goodwill, J., Mai, X., & Nguyen, C. (2016). Manganese removal from drinking water sources. *Current Pollution Reports*, 2(3), 168-177. 10pp.
- Section 7 in Guideline Technical Document (HC 2019) pp 17-33
- Brandhuber, P., Clark, S., Knocke, W., Tobiason, J. (2013). *Guidance for* the Treatment of Manganese. Project #4373. Water Research Foundation. 160pp.
- Webinar: <a href="http://www.youtube.com/watch?v=3jo6tALw7Bl&feature=youtu.be">www.youtube.com/watch?v=3jo6tALw7Bl&feature=youtu.be</a>
- Webinar: <u>https://www.youtube.com/watch?v=rXNx1RF9mSs</u>
- TRU Online Help Centre for BC Small Water Systems: <u>https://smallwatersystemsbc.ca/</u>
- BCWWA Small Water Network: <u>https://www.bcwwa.org/site/resources/systems?nav=sidebar</u>

#### **Questions?**



For any questions or comments, call or email ... Ted Molyneux 604-817-1253 <u>Ted.molyneux@sac-isc.gc.ca</u>