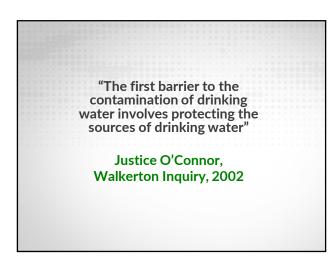


From this session, we will discuss...

- 1. What
- 2. Why
- 3. How
- 4. Key Takeaways

2

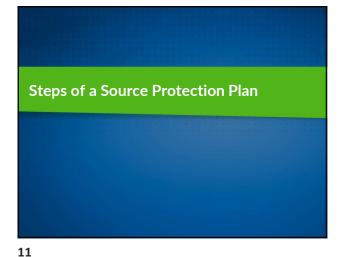



Why do a Source Protection Plan?

4

6

Why do a Source Protection Plan?


• It can help you develop your emergency response plan (Sec 13 of Drinking Water Protection Regulation)

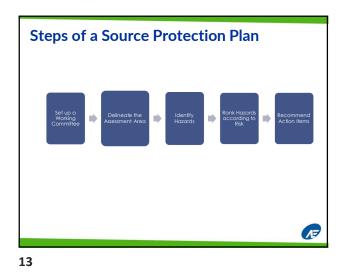
> "13 ... A water supplier must include the following in an emergency response and contingency plan: ...(c) the steps to follow in the event of an emergency or abnormal operational circumstance;"

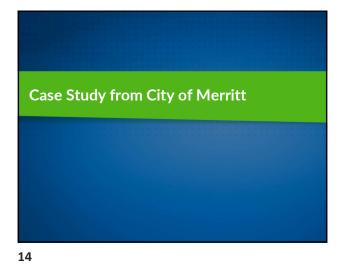
8

9

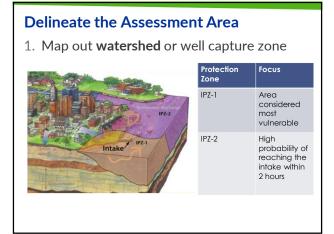
Why do a Source Protection Plan?

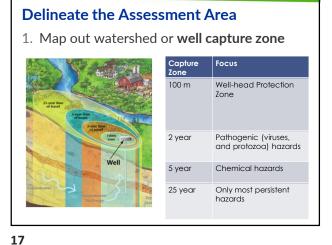
• Helps with resiliency in a changing climate.



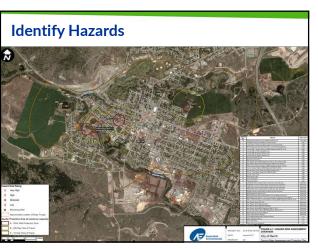

10

3/22/2022


Æ



Stage 1: Establish a Working Committee Hydrogeologist Hydrogeologist Hydro-Geologist Hydro-Geologist Hydro-City Hydro-City Hydro-City Hydro-City Hydro-City Hydro-City Hydro-City Hydro-City Hydro-Ministrator Planner Hencity: Administrator Planner

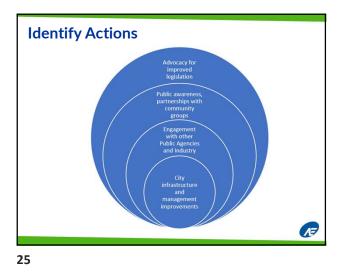


16

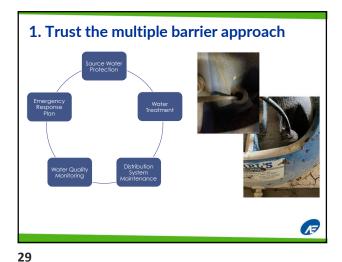
	Well ID	Voght Park	Voght Park #2	Collettville	Fairley Park	Kengard
Well Tag Number (WTN)		unknown	34180	108220	38902	97218
Well Plate ID (WPID)		12729	12728	12727	12730	29680
Maximum Supply Capacity (L/s) ^A		106.4	83.3	56.4	75.8	110+8
	Easting (m) (10 U)	657254	657254	657090	657656	658859
Location	Northing (m) (10 U)	5553201	5553201	5553162	5553319	5553563
	Elevation (masl)	595	595	594	597	602
Well Construction Data	Static Water Level (m bgs)	3.48	3.63	4.3	1.86	3.71
3	Well Depth (m bgs)	29.9	34.1	45.1	25.3	139
Data	Screened Interval(s) (m bgs)	20.7 - 29.	9.8 - 34.1	37.6 - 45.1	19.2 - 25.3	120 - 139
	Casing diameter (mm)	400	400	250	300	400
Ň	Screen diameter (mm)	unknown	unknown	unknown	unknown	300
es: As n	bgs) Casing diameter (mm)	400 unknown	400 unknown	250 unknown	300 unknown	139 400 300

20

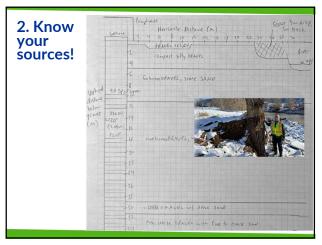

Identify Hazards Distance to Source Contaminants of Concern Hazard Owner Transport Mechanism Down-well City of Merritt All (sabotage) 0 m Direct entry Nutrients (nitrate) and pathogens (viruses, Sanitary City of 100 m is Infiltration sewer Merritt nearest then groundwater flow lines bacteria, protozoa) Æ


21

Likelihood	l x Cons	sequen			
Likelihood	1 Insignificant	2 Minor	Consequent 3 Moderate	ce 4 Major	5 Catastrophic
A (almost certain)	Moderate	High	Very High	Very High	Very High
B (likely)	Moderate	High	High	Very High	Very High
C (possible)	Low	Moderate	High	Very High	Very High
D (unlikely)	Low	Low	Moderate	High	Very High
E (rare)	Low	Low	Moderate	High	High
					A


Action #	Action	Responsible Party	Rough Cost	Timeframe
1	Inspect pumphouses regularly for vandalism, preferred pathways	Operations	n/a	Immediate (within 3 months)
3	Inspect sanitary sewers with priority for those in APA A.	Operations	\$10,000	Short term (within 1 year)
9	Sample for hydrocarbons and metals once a year.	Operations	\$3000	Short term (within 1 year)
17	Review emergency response plans for redundancy in capacity	Operations	n/a	Medium term (1-3 years)

26


Identify Actions Action Action Responsible Party Timeframe Rough Cost Planning Communicate to the n/a Short term public the importance (within 1 of best management practices and year) connection to source water protection Consider developing a DPA for 11 Planning n/a Short tterm (within 1 groundwater year) protection Share the plan with Short term 13 n/a Admin first responders and MOTI (within 1 year) *Example groundwater protection bylaws: https://www.obwb.ca/library/groundwater-bylaws-toolkit/ Æ

27

31

33

3. Have all your documents in one spot

- Annual water report
- Historical water quality (good for comparison)
- Well logs
- Cross sections
- Photos, as-builts, etc.

32

34

36

Discussion

- 1. Be active with the Working Committee
- 2. Store all water quality and reports
- 3. Talk to your Environmental Health Officer, Regional Hydrogeologist about funding.
- 4. Grow your network
- 5. Work with your planning department (put capture zones in GIS database, provide link to OBWB Groundwater Bylaws Toolkit)

Æ

Æ

Discussion

- 6. Document any concerns in your log book
- 7. Sample for an expanded list of water parameters every 3-5 years or before and after major land use changes (all parameters that have health MACs).
- 8. Lock fence, do inspections regularly.
- 9. Start a plan yourself.
- 10. Practice emergency response.

First Nations On-Reserve Source Water Protection Plan Guide and Template

38

Æ

37

In summary, we discussed

- 1. What is a Source Protection Plan?
- 2. Why do a Source Protection Plan?
- 3. Steps of a Source Protection Plan
- 4. Example
- 5. What can operators do?

